Third Year B.C.A. (Under Science) Semester V

Course Code: BCA504 Course Title: Operating Systems

Total Contact Hours: 48 hrs. Total Credits: 04 Total Marks: 100

(60 Lectures)

Teaching Scheme: Theory- 05 Lect./ Week

Pre-requisites : Knowledge of fundamentals of Computer Organization **Course Objectives:**

- 1. To understand the objectives, structure and functions of operating system
- 2. To learn about concept of processes, threads and its scheduling algorithms
- 3. To understand design issues in process synchronization and deadlock management
- 4. To study various memory management schemes
- 5. To learn about concept file and I/O management in detail.

Unit No.	Content	No. of Lecctures
Unit 1	1. Introduction to Operating System Concepts	06
	1.1 Operating System Objectives and Functions -	
	Definition of Operating System ,Role and Objectives of	
	Operating System, Operating System as a User View and	
	System View	
	1.2 Evolution Of Operating Systems - Batch Operating System,	
	Multi-Programming Operating System ,Time-Sharing	
	Operating System, Desktop Operating Systems, Real-Time	
	Operating System, Distributed Operating System, Parallel	
	Systems, Multimedia Systems, Handheld Systems	
	1.3 Computer System Architecture - Single-Processor Systems,	
	Multi-Processor Systems, Clustered Systems	
	1.4 Operating System Operations- Dual-Mode And Multimode	
	Operation, Timer	
	1.5 Operating System as Resource Management- Process	
	Management, Memory Management, Storage Management(
	File system, Mass storage, Caching I/O systems), Protection	
	And Security	
	1.6 Computing Environment-Traditional Computing, Client	
	Server Computing, Peer To Peer Computing, Virtualization, Cloud Computing	
Unit 2	2. System structure	05
Unit 2	2.1 Operating System Services	03
	2.2 System Calls	
	2.3 Types of system Calls- Process Control, File Management,	
	Device Management, Information Maintenance,	
	Communication, Protection	
	2.4 System Programs	

	1	2.5. On anoting System Standards Mathada	
		2.5 Operating System Structuring Methods Simple Structure Levered Approach Micro Kernel Medules	
		Simple Structure, Layered Approach, Micro Kernel, Modules,	
		Virtual Machines – Architecture, Benefits, Exokernel	
TT '4 2	2	2.6 System Boot	0.6
Unit 3	3.	Process and Thread Management	06
		3.1 Process Concept – Process , Process Model , Process Control	
		Block	
		3.2 Operations on Process – Process creation, Process Termination	
		3.3 Process Scheduling - Scheduling queues, Schedulers, Context	
		switch	
		3.4 Inter Process Communication – Cooperating Process, Shared	
		Memory Systems, Message Passing Systems	
		3.5 Overview of Threads	
		3.6 Concept of Multithreaded Programming and Multicore	
		Programming	
		3.7 Types of threads – User and Kernel	
		3.8 Multithreading Models – Many to One, One to Many, Many to	
		Many	
Unit 4	4	Process Scheduling	07
		4.1 Basic Concept – CPU-I/O burst cycle, CPU scheduler,	
		Preemptive scheduling, Dispatcher	
		4.2 Scheduling Criteria	
		4.3 Scheduling Algorithms – FCFS, SJF, Priority scheduling,	
		Round-robin scheduling, Multiple queue scheduling, Multilevel	
		feedback queue scheduling	
		4.4 Thread Scheduling	
Unit 5	5	Process Synchronization	05
		5.1 Background – Problems with Concurrency, Race Condition	
		5.2 Critical Section Problem – Peterson's Solution(for two process)	
		5.3 Semaphores: Usage, Implementation	
		5.4 Classic Problems of Synchronization – Producer Consumer	
		problem, Reader Writer problem, Dining Philosopher Problem	
Unit 6	6	Deadlocks	08
		6.1 System Model	
		6.2 Deadlock Characterization – Necessary Conditions, Resource	
		Allocation Graph	
		6.3 Deadlock Prevention	
		6.4 Deadlock Avoidance - Safe State, Resource Allocation Graph	
		Algorithm, Banker's Algorithm	
		6.5 Deadlock Detection	
		6.6 Recovery From Deadlock – Process Termination, Resource	
		Preemption	
Unit 7	7	Memory Management	11
		7.1 Background – Basic Hardware, Address Binding, Logical	
		Versus Physical Address Space, Dynamic Loading, Dynamic	
	1	Linking and Shared Libraries, Overlays	

	 7.2 Swapping 7.3 Contiguous Memory Allocation – Memory Mapping and Protection, Memory Allocation, Fragmentation 7.4 Paging – Basic Method, Hardware Support, Protection, Shared Pages 7.5 Segmentation – Basic Concept, Hardware 7.6 Virtual Memory Management – Background, Demand Paging 7.7 Page Replacement Algorithms – FIFO, OPT, LRU, Second 	
	Chance Page Replacement 7 8 Threshing Cause of threshing Working set Model	
Unit 8	7.8 Thrashing – Cause of thrashing, Working-set Model 8 File System 8.1 File concept 8.2 Access Methods – Sequential, Direct, Other access methods 8.3 Directory and Disk Structure – Storage structure, Directory overview, Single level directory, Two level directory, Tree structure directory, Acyclic graph directory, General graph directory 8.4 Allocation Methods – Contiguous allocation, Linked allocation, Indexed allocation 8.5 Free Space Management – Bit vector, Linked list, Grouping, Counting, Space maps	06
Unit 9	 9 I/O Systems and Disk Management 9.1 I/O Hardware - polling, interrupts, DMA 9.2 Application I/O Interface - block and character devices, network devices, clocks and timers, blocking and non blocking I/O 9.3 Kernel I/O subsystems - (I/O scheduling, buffering, caching, spooling and device reservation, error handling) 9.4 Disk Structure 9.5 Disk Scheduling – Disk Performance Parameters, Scheduling algorithms(FCFS, SSTF, SCAN,LOOK) 	06

Reference Books:

- 1. "Operating System Concepts", 9th Edition ,by Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, John Wiley & Sons (ASIA) Pvt. Ltd, 2013.
- 2. "Operating Systems: Internals and Design Principles", 7th Edition, by William Stallings, Prentice Hall, 2011
- 3. "Modern Operating Systems", 4th Edition, by Andrew S. Tanenbaum, Prentice Hall of India Pvt. Ltd, 2014.
- 4. "Operating Systems : Principles and Design" Pabitra Pal Choudhary (PHI Learning Private Limited)
- 5. "An Introduction to Operating Systems, Concepts and Practice" by Pramod Chandra P. Bhatt , PHI, 2010